English

Vol. 7 5, 2017 p 76-87

Pages

Article name, authors, abstract and keyword

76-87

Testing of composite repairs according to ISO & ASME standards and beyond

J. Schoene a

a Henkel AG & Co. KGaA, 3, Gutenberg Str., Garching near Munich, 85748, Germany

https://doi.org/10.28999/2541-9595-2017-7-5-76-87

Abstract: Henkel Loctite Company has developed a composite repair system. Henkel operates with its standard repair system up to 80 C and with a newly developed hightemperature system up to 130 C. In addition to the testing program required by ISO and ASME, a range of further experimental investigations, exceeding the requirements of the repair standards, has been carried out to show the performance and robustness achievable by composite. Important topics covered include tests on cyclic pressure loads, the fatigue strength of the composite, and permeation resistance vs. gaseous hydrocarbons. Furthermore, a FEM model has been developed that specifically enables the design of repair cases, which are not usually described in detail by the repair standards, like the repair of dents. The combination of these methods clarifies further details and improves our understanding of composite repair reliability.

Keywords: composite repairs, composite materials, composite repair system, fiber reinforced polymer, pipeline repair, steel sleeve, ISO standards, ASME standards, certification, adhesion, heat deflection temperature, dynamic mechanical analysis

Reference for citing:
Schoene J. Testing of composite repairs according to ISO & ASME standards and beyond. Naukatekhnol. truboprov. transp.neftiinefteprod. = Science & Technologies: Oil and Oil Products Pipeline Transportation. 2017;7(5):7686.

References:
[1] The World Factbook Central Intelligence Agency. Field listing: pipelines [accessed 2016 September 6]. https://www.cia.gov/library/publications/the-world factbook/fields/2117.html.
[2] Kishawy H. A., Gabbar H. A. Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping. 2010;87:373380.
[3] Evaluating different rehabilitation approaches. Pipelines International. January 5, 2010 [accessed 2017 February 23]. https://www.pipelinesinternational.com/2010/01/05/evaluating- different-rehabilitation-approaches/.
[4] Sider A., Friedman N. More Than Half of U.S. Pipelines Are at Least 46 Years Old. The Wall Street Journal [updated 2016 November 2]. https://www.wsj.com/articles/aging-pipelines-raise-concerns-1478128942.
[5] Koch G. H., Brongers M. P., Tompson N. G., Virmani Y. P., Payer J. H. Corrosion cost and preventative strategies in the United States. Federal Highway Administration, Office of Infrastructure Research and Development; 2002; p. 260311.
[6] Lim K. S., Azraai S. N. A., Noor N. M., Yahaya N. An Overview of Corroded Pipe Repair Techniques Using Composite Materials. World Academy of Science, Engineering and Technology. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 2016;10(1):1925.
[7] Mohitpour M., Golshan H., Murray A. Pipeline design and construction: a practical approach. 2nd ed. New York: American Society of Mechanical Engineers; 2003.
[8] Bruce W. A., Amend W. E. Steel Sleeves vs. Composites for In-Service Pipeline Repair. Welding Journal. 2011;90(6):7277.
[9] Kiefner J. F., Duffy A. R., Bunn J. S., Hanna L. E. Feasibility and Methods of Repairing Corroded Line Pipe. Materials Protection and Performance. 1972;3(10).
[10] Kiefner J. F, Duffy A. R. A study of two methods for repairing defects in line pipe. Final Report to the Pipeline Research Committee of the American Gas Association. Catalog No. L22275. October 1974.
[11] Kiefner J. F., Whitacre G. R., Eiber R. J. Further Studies of Two Methods for Repairing Defects in Line Pipe. Final Report to the Pipeline Research Committee of the American Gas Association, NG-18 Report No. 112, 1978 March 2.
[12] Bang, I.-W., Son, Y.-P., Oh K. H., Kim W.-S., Kim Y. P. Numerical simulation of sleeve repair welding of in-service gas pipelines. Welding Journal. 2002;81:273282.
[13] Kou J., Yang W. Application progress of oil and gas pipeline rehabilitation technology. Proceeding of the International Conference on Pipelines and Trenchless Technology (ICPTT). Beijing, China, 2011 October 2629; p. 12851292.
[14] Fawley N.C. Development of Fiberglass Composite Systems for Natural Gas Pipeline Service. Final Report for the Gas Research Institute, GRI-95/0072. March 1994.
[15] Gross A., Schäfer H. Fügen von Faserverbund-Kunststoffen. Technica. 1990;39(21):4449.
[16] Kelly G. Joining of Carbon Fibre Plastics for Automotive Applications [dissertation]. Stockholm (Schweden): Royal Institute of Technology; 2004.
[17] Balle F., Wagner G., Eifler D. Ultraschallmetallschweißen von Aluminiumblechen an einen kohlenstofffaserverstärkten Thermoplastmatrix-Verbundwerkstoff. Advanced Engineering Materials. 2009;11(Heft 1/2):3539.
[18] Specht U., Clausen J., Ihde J., Mayer B. Surface modification for increased material joint strength between aluminium and infiltrated titanium structure elements. Materials Science and Engineering; 2012 Sep 2527; Darmstadt, Germany.
[19] Schoene J., Schiebahn A., Reisgen U. Smart Multi Material Joint: Hybrider Verbund zwischen Stahl und FVK. In: 4. Doktoranden seminar Klebtechnik: Vorträge der gleichnamigen Veranstaltung in Bremen 2013. Düsseldorf: DVS-media; 2015; p. 6471.
[20] Lohse H. Kleben von Composite-Bauteilen in der Automobilfertigung. Jahrbuch 2013. Düsseldorf: DVS-media; 2013.
[21] Jung K.-W., Kawahito Y., Takahashi M., Katayama S. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy. Journal of Laser Applications. 2013;25(3).
[22] Schürmann H., Konstruieren mit Faser-Kunststoff-Verbunden. Berlin: Springer; 2005.
[23] Süllentrop S., Meschut G., Hahn O. Fügen von Leichtbaustrukturen in der FVK/Metall-Mischbauweise [accessed 2013 Oct 09]. http://www.kunststofflandnrw.de/fileadmin/user_upload/Bilder/News/LWF_Praesentation_Kunststoffland.pdf.
[24] Matsuzaki R., Shibata M., Todoroki A. Reinforcing an aluminum/GFRP co-cured single lap joint using inter-adherend fiber. Composites: Part A. 2008;39:786795.
[25] Intrinsische Hybridverbunde Grundlagen der Fertigung, Charakterisierung und Auslegung: DFG-Schwerpunktprogramm (SPP1712). Deutschen Forschungsgemeinschaft, 2013
[26] Flemming M., Ziegmann G., Roth S. Faserverbundbauweisen: Fertigungsverfahren mit duroplastischer Matrix. Berlin; Heidelberg: Springer-Verlag; 1999.
[27] Handbuch der Faserverbundwerkstoffe. 2. Auflage. Waldenbuch: R&G GmbH; 2001/2002.
[28] Brewis D.M., Comyn J., Fowler J.R. Heat distortion temperatures, glass transition temperatures and extent of chemical cure of some amine-hardened epoxide resins. Polymer. 1979;20:15481552.
[29] Sims G. D., Gnaniah S. J. P. Improved procedures for the determination of Tg by Dynamic Mechanical Analysis. Proceedings of 17th International Conference on Composite Materials (ICCM-17). Edinburgh, Scotland, 2009 July 2731.
[30] Pascault J.-P., Sautereau H., Verdu J., Williams R. Thermosetting polymers. New York: Marcel Dekker, Inc.; 2002.
[31] Wolfrum J., Ehrenstein G., Avondet M. Dynamic mechanical thermoanalysis of high performance reinforced materials. J Therm Anal Calorim. 1999;56(3):114754.
[32] Goertzen W. K., Kessler M. R. Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair. Composites: Part B. 2007(38):19.
[33] Hatakeyama T., Quinn F. Thermal analysis: fundamentals and applications to polymer science. 2nd ed. Chichester (UK): John Wiley & Sons; 1999.
[34] Menard K. Dynamic mechanical analysis: a practical introduction. Boca Raton (FL, USA): CRC Press; 1999.
[35] Li G., Lee-Sullivan P., Thring R. Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J Therm Anal Calorim. 2000;60(2):37790.
[36] Osswald T. . Understanding Polymer Processing: Processes and Governing Equations. Munich: Carl-Hanser-Verlag; 2010. 290 p.