Vol. 8 3, 2018 p 309-325


Article name, authors, abstract and keyword


Drag reduction in transportation of hydrocarbon liquids: from fundamentals to engineering applications

Georgy V. Nesyn a, Valery P. Shibaev b, Rustam Z. Sunagatullin a, Alexander Y. Malkin c

a Pipeline Transport Institute, LLC (Transneft R&D, LLC), 47a Sevastopolsky prospect, Moscow, 117186, Russian Federation
b Lomonosov Moscow State University, GSP-1, 1 Leninskie Gory, Moscow, 119991, Russian Federation
c A. V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29 Leninsky prospect, Moscow, 119991, Russian Federation

DOI: 10.28999/2541-9595-2018-8-3-309-325

Abstract: Experimental methods and data treatment for evaluating efficiency of various drag reducing agents (DRA) for turbulent flows of crude oil are discussed. Besides shearing, elongation is employed as elasticity measure for dilute solutions with DRA. Relationship between structure of macromolecules and their efficiency as DRA for hydrocarbon liquids are discussed. Special attention is drawn to technological implementation of DRA starting from synthesis of ultra-long chain polymers through slurry preparation up to loading into the pipeline. Apart from conventional carbon-chain polymers, self-assembling supramolecules and surfactants are considered as promising DRAs for the future applications.

Keywords: drag reduction (Toms effect), turbulence, crude oil, higher polyolefins, turbulence rheometers, DRA technology, macromolecule destruction in flow, surfactants, self-assembling systems.

For citing:
Nesyn G. V., Shibaev V. P., Sunagatullin R. Z., Malkin A. Y. Drag reduction in transportation of hydrocarbon liquids: from fundamentals to engineering applications. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation. 2018;8(3):309325. DOI: 10.28999/2541-9595-2018-8-3-309-325.

[1] Toms B. A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proceedings of the 1st International Congress on Rheology. Amsterdam: North-Holland Publ. 1949;2:135141.
[2] Virk P. S. Drag reduction fundamentals. AIChE Journal. 1975;21(4):625655.
[3] Little R. C., Hansen R. J., Hunston D. L., Kim O., Patterson R. L., Ting R. Y. The drag reduction phenomenon. Observed characteristics, improved agents, proposed mechanisms. Industrial & Engineering Chemistry Fundamentals. 1975:14(4):283296.
[4] Nadolink R. H., Haigh W. W. Bibliography on skin friction reduction with polymers and other boundary-layer additives. Applied Mechanics Reviews. 1995:48(7):351460.
[5] Graham D. Drag reduction in turbulent flow of polymer solutions. Rheology Reviews. 2004;2:143170.
[6] Wang Y., Yu B., Zakin J. L., Shi H., Haifeng S. Review on drag reduction and its heat transfer by additives. Advances in Mechanical Engineering. 2015. Vol. 3. DOI: 10.1155/2011/478749.
[7] Hong C. H., Jang C. H., Choi H. J. Turbulent drag reduction with polymers in rotating disk flow. Polymers. 2015;7(7): 12791298. DOI: 10.3390/polym7071279.
[8] Hamouda A. A. Polymer drag reducer mechanism in light of rheological and molecular behaviour in fluid streams. Annual Transactions of the Nordic Rheology Society. 2007;15:205216.
[9] Sher I., Hetsroni G. A mechanistic model of turbulent drag reduction by additives. Chemical Engineering Science. 2008;63(7):17711778. DOI: 10.1016/j.ces.2007.11.035.
[10] Manzhai V. N., Nasibullina Y. R., Kuchevskaya A. S., Filimoshkin A. G. Physico-chemical concept of drag reduction nature in dilute polymer solutions (the Toms effect). Chemical Engineering and Processing: Process Intensification. 2014;80:3842. DOI: 10.1016/j.cep.2014.04.003.
[11] Burger E. D., Munk W. R., Wahl H. A. Flow increase in the Trans Alaska pipeline through use of a polymeric drag reducing additive. Journal of Petroleum Technology. 1982. Vol. 34. Issue 2. P. 377386. DOI: 10.2118/9419-PA.
[12] Kulmatova D. Turbulent drag reduction by additives [PhD Thesis]. University of Amsterdam, 2013 [accessed 2017 May 11]. http://dare.uva.nl/search?metis.record.id=398395.
[13] Hadri F., Guillou S. Drag reduction by surfactant in closed turbulent flow. International Journal of Engineering Science and Technology. 2010;2(12):68766879. http://tarjomefa.com/wp-content/uploads/2016/10/5447-English.pdf.
[14] Chan A. S., Dewey P. A., Jameson A., Liang Ch. Vortex suppression and drag reduction in the wake of counter-rotating cylinders. Journal of Fluid Mechanics. 2011;679:343382. DOI: 0.1017/jfm.2011.134.
[15] Choi H. J., Jhon M. S. Polymer-induced turbulent drag reduction. Industrial & Engineering Chemistry Research.1996;35(9): 29932998. DOI: 10.1021/ie9507484.
[16] Revel-Muroz P. A., Shiryaev A. M., Zverev F. S., Nesyn G. V., Gilmutdinov N. R. Laboratory equipment for hydrodynamic resistance research of oil and oil products. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation. 2015;(3):1222. (In Russ.)
[17] Zhang Y. Correlations among surfactant drag reduction additive chemical structures, rheological properties and microstructures in water and water/co-solvent systems [Electronic PhD Dissertation]. Ohio State University, 2005. https://etd.ohiolink.edu/.
[18] Nesyn G. V. Synthesis of drag reducing additives that increase the capacity of oil pipelines [dissertation of Dr. Sci. (Chem.)]. Kazan: Kazan State Technological University; 2007. (In Russ.)
[19] Nesyn G. V., Konovalov K. B., Vetrova O. V., Menshov P. V. Laboratory evaluation of the drag reduction additives effectiveness. Procedia Chemistry. 2015;15:371377. DOI:10.1016/j.proche.2015.10.059.
[20] Konovalov K. B. Processes of synthesis and grinding of ultrahigh-molecular polymers of higher alpha-olefins and devices for their realization [dissertation]. Tomsk: Tomsk Polytechnic University; 2013. (In Russ.)
[21] Nesyn G. V., Manzhai V. N., Shibayev V. P. Impact of the length of a lateral substituent of poly-n-alkyl-methacrylates on their drag reducing ability. Polymer Science. 1986;28B(9):714717. (In Russ.)
[22] Stepanova . V. Experimental investigations of eddy flow fine texture in a liquid with a free surface [Dissertation of Cand. Sci. (Phys. and Math.)]. Moscow, 2009. (In Russ.)
[23] Kolmogorov A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings: Mathematical and Physical Sciences. 1990;434(1890):913 [accessed 2017 December 11]. http://www.jstor.org/stable/51980.
[24] Falkovich G. Fluid mechanics: a short course for physicists. Cambridge: Cambridge University Press; 2011.
[25] Bazilevskii A., Voronkov S., Entov V., Rozhkov A. On orientational effects at breakup of jets and threads of dilute polymer-solutions. Doklady Akademii nauk SSSR. 1981;257(2):336339. (In Russ.)
[26] Bazilevsky A. V., Entov V. M., Rozhkov, A. N. Liquid filament microrheometer and some of its applications. In: Third European Rheology Conference and Golden Jubilee Meeting of the British Society of Rheology; 1990. P. 4143.
[27] Entov V. M., Hinch E. J. Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. Journal of Non-Newtonian Fluid Mechanics. 1997;72(1):3153. DOI: 10.1016/S0377-0257(97)00022-0.
[28] Bhardwaj A., Miller E., Rothstein J. P. Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. Journal of Rheology. 2007:51(4):693719. DOI: 10.1122/1.2718974.
[29] HAAKE CaBER 1. Quantifying the extensional properties of fluids. Product Specifications. [accessed 2017 May 11]. URL: http://www.thermo.com.cn/resources/200802/file_856.pdf.
[30] Gaslievic K., Aguilar G., Matthys E. F. On two distinct types of drag-reducing fluids, diameter scaling, and turbulent profiles. Journal of Non-Newtonian Fluid Mechanics. 2001;96(3): 405425. DOI: 10.1016/S0377-0257(00)00169-5.
[31] Malkin A. Y., Nesyn G. V., Ilyusnikov A. V., Manzhai V. N. A method for monitoring polymer reactions in very dilute solutions. Journal of Non-Newtonian Fluid Mechanics. 2001;97(2):195206.
[32] Malkin A. Y., Nesyn G. V., Ilyusnikov A. V., Manzhai V. N. Using the Toms effect for rheokinetic study of the initial stage of polymerization. Journal of Rheology. 2000;44(2):371378.
[33] Gasljevic K., Aguilar G., Matthys E. F. An improved diameter scaling correlation for turbulent flow of drag-reducing polymer solutions. Journal of Non-Newtonian Fluid Mechanics. 1999;84(23):131148. DOI: 10.1016/S0377-0257(98)00155-4.
[34] Lisin Y. V., Syomin S. L., Zverev F. S. Assessment of effectiveness of drag reducing agents based on the results of pilot testing at trunk oil pipelines. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation. 2013;3:611. (In Russ.)
[35] Brostow W., Hagg Lobland H. E., Reddy T., Singh R. P., White L. Lowering mechanical degradation of drag reducers in turbulent flow. Journal of Materials Research. 2007:22(1): 5660. DOI: 10.1557/jmr.2007.0003.
[36] Abdulbari H. A., Yousif Z., Akindoyo E. O., Yacoob Z. Enhancement of additives polymeric drag resistance to degradation. Journal of Purity, Utility Reaction and Environment. 2015;4(2):4855.
[37] Hunston D. L, Reischman M. M. The role of polydispersity in the mechanism of drag reduction. Physics of Fluids. 1975;18(12):16261629.
[38] Vlachogiannis M., Liberatore M. W., McHugh A. J., Hanratty T. J. Effectiveness of a drag reducing polymer: Relation to molecular weight distribution and structuring. Physics of Fluids. 2003;15(12):37863794.
[39] Nesyn G. V., Shakhovskaya L. I., Shibayev V. P. Behavior of diluted solutions of diphilic polymers in a turbulent flow. Polymer Science. 1981;23B(11):815818. (In Russ.)
[40] Nesyn G. V., Manzhai V. N., Shibayev V. P. Impact of temperature and solvent nature on drag reducing ability of polymers. Polymer Science. 1989;31A(7):14121418. (In Russ.)
[41] Nesyn G. V., Shakhovskaya L. I., Shibayev V. P. Behaviour of dilute solutions of DNA in a turbulent flow. Polymer Science. 1982;24B(7):487490. (In Russ.)
[42] Nesyn G. V., Souleymanova Y. V., Polyakova N. M., Filatov G. P. A slurry type drag. Bulletin of the Tomsk Polytechnic University. 2006;309(3):112115. (In Russ.)
[43] Braun D., Cherdron H., Rehahn M., Ritter H., Voit B. Polymer synthesis: theory and practice. Fourth Edition. Berlin, Heidelberg: Springer-Verlag; 2005. P. 5863.
[44] Nesyn G. V., et al. Suspension polymerization of higher alpha olefins in perfluoroalkane media as a method of drag reducing agent preparation. Proceedings of VII Annual European Rheological Conference, 2011. P. 125.
[45] Malkin A. Y., Semakov A. V., Kulichikhin V. G. Self-organization in the flow of complex fluids (colloid and polymer systems): Part 1: Experimental evidence. Advances in Colloid and Interface Science. 2010;157(12):7590. DOI: 10.1016/j.cis.2010.04.002.
[46] Semakov A. V., Kulichikhin V. G., Malkin A. Y. Self-organization of polymeric fluids in strong stress fields. Advances in Condensed Matter Physics. 2015;2015:117.
[47] Malkin A. Y., Kulichikhin V. G. Spatial-temporal phenomena in the flows of multi-component materials. Applied Rheology. 2015;25(3):922. DOI: 10.3933/ApplRheol-25-35358.
[48] Malkin A., Kulichikhin V., Ilyin S. A modern look on yield stress fluids. Rheologica Acta. 2017;56(3):177188. DOI: 10.1007/s00397-016-0963-2.
[49] Malkin A. Y., Kulichikhin V. G. Shear thickening and dynamic glass transition of concentrated suspensions. State of the problem. Colloid Journal. 2016;78(1):18. DOI: 10.1134/S1061933X16010105.
[50] Kalashnikov V. N., Tsiklauri M. G. Supermolecular structures and flow birefringence in polymer solutions. Colloid and Polymer Science. 1996;274(12):11191128. DOI: 10.1007/BF00655682.
[51] Kulichikhin V. G., Malkin A. Y., Semakov A. V., Skvortsov I. Y., Arinstein A. Liquid filament instability due to stretch-induced phase separation in polymer solutions. Liquid filament instability. The European Physical Journal E. 2014;37(10). DOI: 10.1140/epje/i2014-14010-9.
[52] Zakin J. L., Zhang Y., Ge W. Drag reduction by surfactant giant micelles. In: Zana R., Kaler E. W., editors. Giant Micelles: Properties and Applications. Boca Raton (Fl): CRC Press; 2007; 473492.
[53] Zakin J. L., Lu B., Bewersdorff H.-W. Surfactant drag reduction. Reviews in Chemical Engineering. 1998;14(45): 253320. DOI: 10.1515/REVCE.1998.14.4-5.253.
[54] Clasen C., Plog J. P., Kulicke W.-M., Owens M., Macosko C., Scriven L. E., Verani M., McKinley G. H. How dilute are dilute solutions in extensional flows? Journal of Rheology. 2006;50(6):849881. DOI: 10.1122/1.2357595.
[55] Lortie F., Boileau S., Bouteiller L., Chassenieux C., Deme B., Ducouret G., Jalabert M., Laupretre F., Terech P. Structural and rheological study of a bis-urea based reversible polymer in an apolar solvent. Langmuir. 2002;18(19):72187222. DOI: 10.1021/la0255166.
[56] Sabadini E., Francisco K. R., Bouteiller L. Bis-urea-based supramolecular polymer: The first self-assembled drag reducer for hydrocarbon solvents. Langmuir. 2010;26(3):14821486. DOI: 10.1021/la903683e.